Volume Booster / Proportional Valve Combination

What are volume booster / proportional valve combinations used for?

Combinations of volume boosters and proportional valves lend themselves for electronically regulating high volume flows. On the one hand common proportional valves are not available with connection sizes big enough, on the other hand combinations are in most cases more economic. There are two ways of regulating: Single loop systems are suitable for standard applications without high requirements for accuracy and without consideration of pressure drop at high flow. Double loop regulations on the contrary are much more accurate and also qualified for dynamic processes.

General operational descriptions

The volume booster and proportional valve are fed by the supply pressure. When no command signal is applied the outlet pressure behind the booster is zero. When the command signal is increased the outlet pressure rises in proportion to it. Since the transmission ratio is not exactly 1:1, a slight pressure difference occurs between the outlet pressure of the proportional valve and the booster's outlet on single loop systems. This can be balanced by a feedback signal (double loop), though.

G½ up to G3 compressed air or liquids

Single loop

At single loop combinations the pressure difference between command signal and outlet pressure is being ignored because the proportional valve only refers to its own outlet pressure within the pilot chamber. The outlet pressure performance is dependent of the volume booster's accuracy.

proportional pressure regulator described support intuit outer pressure outer pressure volume booster

PRE2, R450 with single loop

Double loop

Combinations with a second feedback have the possibility to balance pressure differences. For this a pressure transducer is installed in the outlet line of the booster. The electrical signal of the transducer is applied as a feedback signal onto the proportional valve. The valve detects any pressure differences and compensates them automatically. In high flow applications a pressure drop at the outlet of the pilot regulator is thus minimised.

General features

Construction type The volume booster / proportional valve combinations are delivered com-

pletely assembled and calibrated.

Mounting position preferred horizontal (see figure)

Protection class IP 54 with ordinary coupling socket as standard, optionally IP 65 for some

devices (see according product information sheets)

Temperature range $\,$ 0 °C to 50 °C / 32 °F to 122 °F for all proportional valves, for booster

ranges refer to according product sheets

PRA, R119 with single loop

Pneumatic features

 $\begin{tabular}{ll} \textbf{Command signal} & \textbf{The proportional valves may only be fed with dry and 5 μm filtered} \\ \end{tabular}$

compressed air. The pneumatic command signal must always be air!

Media Preferred dry, 5 µm filtered compressed air for supply of the proportional

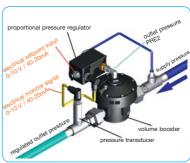
valves. The volume boosters can operate with air or non-corrosive gases, model R120 even with liquids. The respective air consumption and the

relieving function strongly have to be regarded.

Inlet pressure dependent of the according combination (see according product

information sheets)

Pressure supply The proportional valve has to be separately supplied with compressed air


with regard to the valve's maximum inlet pressure.

Exhaust The proportional valve exhausts only the booster's pilot chamber. The

booster, if in relieving version, exhausts the volume of the supply pressure

line. The relief capacity is subject to the differential pressure.

Volume flow see specifications of the according volume booster

PQ2, R450 with double loop

Electrical features

Supply voltage All valves have to be supplied with 24 V DC. **Power consumption** see according product information sheets

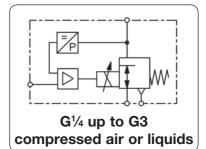
Setpoint input 0-10 V as standard, optionally 4-20 mA for all valves

Monitor signal A feedback signal is not reasonable for the single loop version because

here only the pressure of the booster's pilot chamber is monitored. That value does not give any information about the outlet pressure behind the

booster.

Volume Booster / Proportional Valve Combination


110000

G3

0... 10

General operational description:
The volume booster and proportional valve are fed by the supply pressure. When no command signal is applied the outlet pressure behind the booster is zero. When the command signal is increased the outlet pressure rises in proportion to it. Since the transmission ratio is not exactly 1:1, a slight pressure difference occurs between the outlet pressure of the proportional valve and the booster's outlet on single loop systems. This can be balanced by a feedback signal (double loop), though.

At single loop combinations the pressure difference between command signal and outlet pressure is being ignored because the proportional valve only refers to its own outlet pressure within the pilot chamber. The outlet pressure performance is dependent of the volume booster's accuracy.

Single loop combination examples

(Flow	Connection	Outlet	Part number		Order number		
	rate	thread	pressure	Booster	Prop.valve	of combination		
	l/min	G	bar					

R750 with PRE1, for compressed air or non-corrosive gases setpoint 0-10 V, Pt max. 17 bar

1000 0... 8 PRE1-U08 BP1U750-02

R450 with PRE1, for compressed air or non-corrosive gases setpoint 0-10 V, P1 max. 17 bar 4000 G1/2 BP1U450-04 0... 8 R450-04I PRE1-U08

R119 w	vith PPA,	for compress	sed air or no	n-corrosive gases	setpoint 0-10 V, P ₁ max. 21 bar	
5600	G½	0 10	R119-04J	PPA00-1000	BP1U119-04	
9000	G¾	0 10	R119-06J	PPA00-1000	BP1U119-06	
10000	G1	0 10	R119-08J	PPA00-1000	BP1U119-08	
12000	G1½	0 10	R119-12J	PPA00-1000	BP1U119-12	
42 000	G2	0 10	R119-16J	PPA00-1000	BP1U119-16	
44000	C21/-	0 10	D110 20 I	DDA00 1000	PD411440-00	

RGB4 with PRE1A2, for compressed air or gases setpoint 0-10 V, P1 max. 4 bar										
700	G½	00,2	RGB4-04J	PRE1-UA2	BP1UGB4-04					
2800	G1	00,2	RGB4-08J	PRE1-UA2	BP1UGB4-08					
5600	G1½	00.2	RGB4-12J	PRE1-UA2	BP1UGB4-12					

PPA00-1000

BP1U119-24

R119-24J

RZ1 wi	ith PRE1-	.01/02, for	compressed	d air or gases	setpoint 0-10 V, P1 max. 16 bar
2900	G1	0 1	RZ1-08J	PRE1-U02	BP1UZ-08
5700	G1½	0 1	RZ1-12J	PRE1-U02	BP1UZ-12
21 000	G2	0 1	RZ1-16J	PRE1-U02	BP1UZ-16

R120 v	vith PPA,	for compress	ed air, gases	or liquids	setpoint 0-10 V, P ₁ max. 50 bar
1 200	G1/2	0 15	R120-04J2	PPA00-1600	BP1U120-04
4200	G¾	0 15	R120-06J2	PPA00-1600	BP1U120-06
5000	G1	0 15	R120-08J2	PPA00-1600	BP1U120-08
1200	G1/2	0 50	R120-04J5	PP000-5000	BP1U120-04J5
4200	G¾	0 50	R120-06J5	PP000-5000	BP1U120-06J5
5000	G1	0 50	R120-08J5	PP000-5000	BP1U120-08J5
14000	G1½	0 50	R120-12J5	PP000-5000	BP1U120-12J5
15 000	G2	0 50	R120-16J5	PP000-5000	BP1U120-16J5

Special options, add the appropriate letter

BP1**I**...-... 4-20 mA input signal

BP1U450-04

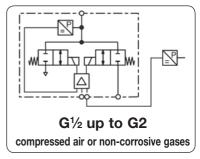
BP1U119-16

BP1UZ-08

BP1U120-08J5

Gauges: see chapter for measuring devices Further details: see chapter for single devices

PDF CAD www.aircom.net



Volume Booster / Proportional Valve Combination

General operational description:

The volume booster and proportional valve are fed by the supply pressure. When no command signal is applied the outlet pressure behind the booster is zero. When the command signal is increased the outlet pressure rises in proportion to it. Since the transmission ratio is not exactly 1:1, a slight pressure difference occurs between the outlet pressure of the proportional valve and the booster's outlet on single loop systems. This can be balanced by a feedback signal (double loop), though.

Combinations with a second feedback have the possibility to balance pressure differences. For this a pressure transducer is installed in the outlet line of the booster. The electrical signal of the transducer is applied as a feedback signal onto the proportional valve. The valve detects any pressure differences and compensates them automatically. In high flow applications a pressure drop at the outlet of the pilot regulator is thus minimised.

Double loop combination example

Flow	Connection	Outlet	Part number			Order number	
rate	thread	pressure	Sensor	Booster	Prop.valve	of combination	
l/min	G	bar					

R450 v	with PQ2	, for comp	oressed air	or non-co	rrosive gases	setpoint 0-10 V, P ₁ max. 17 bar
4000	G1/2	0 1	DAV-01H	R450-04I	PQ2EE-01	BP2U450-0401
		0 6	DAV-06H	R450-04I	PQ2EE-06	BP2U450-0406
		010	DAV-10H	R450-04I	PQ2EE-10	BP2U450-0410

BP2U450-0406

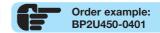
R200 v	vith PQ2,	for comp	oressed air	or non-co	rrosive gases	setpoint 0-10 V, P ₁ max. 17 ba
28 000	G1	0 1	DAV-01H	R200-08I	PQ2EE-01	BP2U200-0801
		0 6	DAV-06H	R200-08I	PQ2EE-06	BP2U200-0806
		010	DAV-10H	R200-08I	PQ2EE-10	BP2U200-0810

RGB4	RGB4 with PQ2, for compressed air or gases										
700	G1/2	00.35	DAV-C4H	RGB4-04J	PQ2EE-C4	BP2UGB4-04					
2800	G1	00.35	DAV-C4H	RGB4-08J	PQ2EE-C4	BP2UGB4-08					
5600	G1½	00.35	DAV-C4H	RGB4-12J	PQ2EE-C4	BP2UGB4-12					

BP2U200-0806

RZ1 w	ith PQ2,	setpoint 0-10 V, P1 max. 16 bar				
2900	G1	01	DAV-01H	RZ1-08J	PQ2EE-01	BP2UZ-08
5700	G1½	01	DAV-01H	RZ1-12J	PQ2EE-01	BP2UZ-12
21 000	G2	01	DAV-01H	RZ1-16J	PQ2EE-01	BP2UZ-16

BP2UGB4-12



4-20 mA input signal BP2**I**...-...

Gauges: see chapter for measuring devices Further details: see chapter for single devices

